Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Bis(diethoxyselenophosphinoyl) triselenide and bis(diisopropoxyselenophosphinoyl) diselenide

Virginie Béreau and James A. Ibers*

Northwestern University, Department of Chemistry, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
Correspondence e-mail: ibers@chem.nwu.edu

Received 24 November 1999
Accepted 31 January 2000
The title compounds, bis(diethoxyselenophosphinoyl) triselenide, $\left[\mathrm{P}(\mathrm{OEt})_{2} \mathrm{Se}\right] \mathrm{Se}_{3}\left[\mathrm{P}(\mathrm{OEt})_{2} \mathrm{Se}\right]$, and bis(diisopropoxyselenophosphinoyl) diselenide, $\left[\mathrm{P}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{2} \mathrm{Se}^{2}\right] \mathrm{Se}_{2}\left[\mathrm{P}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{2} \mathrm{Se}\right]$, comprise an Se_{3} chain or an Se_{2} chain bridging two $(R \mathrm{O})_{2} \mathrm{PSe}$ groups.

Comment

As part of our investigation of selenometalate complexes, we have recently reported the preparation, structure and spectroscopy of $\left[\mathrm{Mo}_{3}\left(\mu_{3}-\mathrm{S}\right)\left(\mu_{2}-\mathrm{S}_{2}\right)_{3}\left(\mathrm{Se}_{2} \mathrm{P}(\mathrm{OEt})_{2}\right)_{3}\right] \mathrm{Br}$ (Béreau \& Ibers, 2000). Although the H^{+}(Jørgensen, 1962) and K^{+}salts (Kudchadker et al., 1968) of the $\mathrm{Se}_{2} \mathrm{P}(\mathrm{OEt})_{2}$ ligand have been known for some time, metal complexes of the ligand are rare; only three compounds containing $\left[\mathrm{Se}_{2} \mathrm{P}(\mathrm{OEt})_{2}\right]$ have been structurally characterized (Liu et al., 1998, 1999; Béreau \& Ibers, 2000). As an extension of these studies we reacted $\mathrm{K}\left[\mathrm{Se}_{2} \mathrm{P}(\mathrm{OEt})_{2}\right]$ with VCl_{3} in ethanol. Triselenide (I) was obtained as a by-product. This synthesis is very different from the literature preparation (Kudchadker et al., 1968), which involves refluxing a stoichiometric mixture of $\mathrm{P}_{2} \mathrm{Se}_{5}$ and ethanol in cyclohexane for 4 h . Diselenide (II) was obtained according to this same procedure from $\mathrm{P}_{2} \mathrm{Se}_{5}, 2$-propanol and n-heptane.

Figs. 1 and 2 show the molecular structures of (I) and (II), respectively. Compound (II) has a crystallographically imposed center of symmetry, but it possesses non-crystallographic symmetry very close to $2 / m$. The least-squares plane through atoms $\mathrm{Se} 1, \mathrm{Se} 1^{\mathrm{i}}, \mathrm{Se} 2, \mathrm{Se} 2^{\mathrm{i}}, \mathrm{P} 1$ and $\mathrm{P} 1^{\mathrm{i}}$ [symmetry code: (i) $1-x, 1-y,-z]$ has the equation in crystal coordinates of $-2.830 x+5.713 y+5.419 z=1.441$. The coefficients do not have rational ratios and hence the molecular symmetry does not correspond to undetected crystallographic symmetry.

Figure 1
The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms are drawn as spheres of an arbitrary radius.

Within the Se_{3} bridge of (I), the $\mathrm{Se}-\mathrm{Se}$ bond distances are equivalent with $\mathrm{Se} 1-\mathrm{Se} 2=2.3448$ (6) and $\mathrm{Se} 1-\mathrm{Se} 3=$ 2.3439 (6) \AA. In the Se_{2} bridge of (II), the $\mathrm{Se}-\mathrm{Se}$ bond distance is $\mathrm{Se} 2-\mathrm{Se} 2=2.3951$ (6) \AA. These distances are normal for $\mathrm{Se}-\mathrm{Se}$ single bonds (Tattershall et al., 1997). The two P atoms have tetrahedral environments in both (I) and (II), being bonded to two Se atoms and two O atoms. The $\mathrm{P}-$ Se bond distances involving Se atoms of the Se_{3} and Se_{2} chains are 2.2412 (11) and 2.2378 (10) \AA for (I), and 2.2223 (8) \AA for (II); these correspond to single bonds. Those $\mathrm{P}-\mathrm{Se}$ bonds involving terminal Se atoms, at 2.0652 (9) and 2.0721 (9) \AA for (I), and 2.0733 (7) \AA for (II), correspond to double bonds. The $\mathrm{P}-\mathrm{O}$ bond distances range from 1.569 (2) to 1.581 (2) \AA for (I) and are 1.567 (2) and 1.567 (2) \AA for (II).

There appears to be no literature on the metal coordination chemistry of compounds (I) and (II). Yet, given the extensive literature on chalcogen ligands, we believe that (I) and (II) could act as potential ligands, exhibiting an $S e, S e$-chelation mode through the two terminal Se atoms to form an eight-

Figure 2
The molecular structure of (II). Displacement ellipsoids are drawn at the 50% probability level and H atoms are drawn as spheres of an arbitrary radius [symmetry code: (i) $1-x, 1-y,-z$].
membered ring for (I) and a seven-membered ring for (II). For (I), the μ_{2}-Se ligand could act as an additional coordination site and the ligand could exhibit η^{3}-coordination through the two terminal Se atoms and the bridging Se atom.

Experimental

Compound (I) was prepared from a mixture of VCl_{3} (50 mg , $0.3 \mathrm{mmol})$ and $\mathrm{K}\left[\mathrm{Se}_{2} \mathrm{P}(\mathrm{OEt})_{2}\right](280 \mathrm{mg}, 0.9 \mathrm{mmol})$ in previously degassed absolute ethanol $(10 \mathrm{ml})$. The deep purple solution was stirred at room temperature for 2 h . The solvent was removed under vacuum. The residue was disolved in diethyl ether $(10 \mathrm{ml})$ and the resulting solution was stored at 277 K . Yellow crystals grew in 35% yield over two weeks. Spectroscopic analysis, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right.$, p.p.m.): $4.16\left(m, \mathrm{CH}_{2}\right), 1.80\left(t, \mathrm{CH}_{3}\right) ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right.$, p.p.m., ${ }^{1} J_{\mathrm{PSe}}$ in Hz$): ~ 69.5(901,570)$. Some pink crystals of unknown composition were also obtained. Compound (II) was prepared according to the synthesis reported by Kudchadker et al. (1968). Orange crystals were grown directly from the reaction mixture in 55% yield. Spectroscopic analysis, ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}$, p.p.m.): $5.11(m, \mathrm{CH}), 1.56\left(d, \mathrm{CH}_{3}\right) ;{ }^{31} \mathrm{P}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}$, p.p.m., ${ }^{1} J_{\mathrm{PSe}}$ in Hz$): 63.3(884,532)$.

Compound (I)

Crystal data
$\mathrm{C}_{8} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{Se}_{5}$
$M_{r}=636.98$
Triclinic, $P \overline{1}$
$a=8.320(2) \AA$
$b=11.222(3) \AA$
$c=12.409(3) \AA$
$\alpha=115.317(4)^{\circ}$
$\beta=107.351(4)^{\circ}$
$\gamma=92.688(4))^{\circ}$
$V=979.0(5) \AA^{3}$

Data collection

Bruker SMART 1000 CCD
diffractometer
ω scans
Absorption correction: numerical face-indexed (SHELXTL; Sheldrick, 1997)
$T_{\text {min }}=0.434, T_{\text {max }}=0.921$
6938 measured reflections
$Z=2$
$D_{x}=2.161 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 8192 reflections
$\theta=2.05-25.00^{\circ}$
$\mu=9.521 \mathrm{~mm}^{-1}$
$T=153$ (2) K
Needle, yellow
$0.31 \times 0.07 \times 0.03 \mathrm{~mm}$

3398 independent reflections 2893 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.017$
$\theta_{\text {max }}=25^{\circ}$
$h=-9 \rightarrow 9$
$k=-13 \rightarrow 13$
$l=-14 \rightarrow 14$
Intensity decay: $<2 \%$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$ for (I).

$\mathrm{Se} 1-\mathrm{Se} 3$	$2.3439(6)$	$\mathrm{P} 2-\mathrm{O} 4$	$1.578(2)$
$\mathrm{Se} 1-\mathrm{Se} 2$	$2.3448(6)$	$\mathrm{O} 1-\mathrm{C} 1$	$1.465(4)$
$\mathrm{Se} 2-\mathrm{P} 1$	$2.2412(11)$	$\mathrm{O} 2-\mathrm{C} 3$	$1.454(4)$
$\mathrm{Se} 3-\mathrm{P} 2$	$2.2378(10)$	$\mathrm{O} 3-\mathrm{C} 5$	$1.461(4)$
$\mathrm{Se} 4-\mathrm{P} 2$	$2.0721(9)$	$\mathrm{O} 4-\mathrm{C} 7$	$1.460(4)$
$\mathrm{Se} 5-\mathrm{P} 1$	$2.0652(9)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.495(5)$
$\mathrm{P} 1-\mathrm{O} 2$	$1.569(2)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.442(5)$
$\mathrm{P} 1-\mathrm{O} 1$	$1.581(2)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.462(5)$
$\mathrm{P} 2-\mathrm{O} 3$	$1.569(2)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.477(5)$
$\mathrm{Se} 3-\mathrm{Se} 1-\mathrm{Se} 2$	$105.44(3)$	$\mathrm{Se} 5-\mathrm{P} 1-\mathrm{Se} 2$	$107.83(4)$
$\mathrm{P} 1-\mathrm{Se} 2-\mathrm{Se} 1$	$98.43(3)$	$\mathrm{O} 3-\mathrm{P} 2-\mathrm{O} 4$	$96.42(11)$
$\mathrm{P} 2-\mathrm{Se} 3-\mathrm{Se} 1$	$101.07(2)$	$\mathrm{O} 3-\mathrm{P} 2-\mathrm{Se} 4$	$118.67(9)$
$\mathrm{O} 2-\mathrm{P} 1-\mathrm{O} 1$	$96.40(12)$	$\mathrm{O} 4-\mathrm{P} 2-\mathrm{Se} 4$	$118.52(9)$
$\mathrm{O} 2-\mathrm{P} 1-\mathrm{Se} 5$	$118.86(9)$	$\mathrm{O} 3-\mathrm{P} 2-\mathrm{Se} 3$	$109.68(9)$
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{Se} 5$	$118.51(9)$	$\mathrm{O} 4-\mathrm{P} 2-\mathrm{Se} 3$	$107.83(9)$
$\mathrm{O} 2-\mathrm{P} 1-\mathrm{Se} 2$	$108.76(10)$	$\mathrm{Se} 4-\mathrm{P} 2-\mathrm{Se} 3$	$105.24(4)$
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{Se} 2$	$105.30(8)$		
$\mathrm{P} 1-\mathrm{Se} 2-\mathrm{Se} 1-\mathrm{Se} 3$	$-87.84(3)$	$\mathrm{Se} 2-\mathrm{Se} 1-\mathrm{Se} 3-\mathrm{P} 2$	$-87.75(3)$

Refinement

Refinement on F^{2}
$R(F)=0.021$
$w R\left(F^{2}\right)=0.054$
$S=0.902$
3398 reflections
172 parameters
H -atom parameters constrained $w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+\left(0.04 F_{o}^{2}\right)^{2}\right]$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.54 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.46 \mathrm{e}^{-3}$

Compound (II)

Crystal data
$\mathrm{C}_{12} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{Se}_{4}$
$M_{r}=614.12$
Triclinic, $P \overline{1}$
$a=8.3796(10) \AA$
$b=8.5314$ (10) Å
$c=8.5577$ (10) A
$\alpha=98.668(2)^{\circ}$
$\beta=111.851$ (2) ${ }^{\circ}$
$\gamma=93.459(2)^{\circ}$
$V=556.81(11) \AA^{3}$
$Z=1$
$D_{x}=1.831 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 8192 reflections
$\theta=2.43-24.99^{\circ}$
$\mu=6.743 \mathrm{~mm}^{-1}$
$T=153$ (2) K
Block, orange
$0.13 \times 0.09 \times 0.04 \mathrm{~mm}$

Data collection

Bruker SMART 1000 CCD diffractometer
ω scans
Absorption correction: numerical face-indexed (SHELXTL; Sheldrick, 1997)
$T_{\text {min }}=0.425, T_{\text {max }}=0.877$
4701 measured reflections

Refinement

Refinement on F^{2}
$R(F)=0.026$
$w R\left(F^{2}\right)=0.071$
$S=1.330$
1933 reflections
100 parameters

1933 independent reflections
1745 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.018$
$\theta_{\text {max }}=24.99^{\circ}$
$h=-9 \rightarrow 9$
$k=-10 \rightarrow 10$
$l=-10 \rightarrow 10$
Intensity decay: <2\%

H-atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+\left(0.04 F_{o}{ }^{2}\right)^{2}\right]$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=1.16 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.45 \mathrm{e}^{-3}$

Table 2
Selected geometric parameters $\left({ }^{\circ},^{\circ}\right)$ for (II).

$\mathrm{P} 1-\mathrm{O} 2$	$1.567(2)$	$\mathrm{O} 2-\mathrm{C} 4$	$1.484(3)$
$\mathrm{P} 1-\mathrm{O} 1$	$1.567(2)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.505(5)$
$\mathrm{P} 1-\mathrm{Se} 1$	$2.0733(7)$	$\mathrm{C} 1-\mathrm{C} 3$	$1.516(4)$
$\mathrm{P} 1-\mathrm{Se} 2$	$2.2223(8)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.505(4)$
$\mathrm{Se} 2-\mathrm{Se} 2^{\mathrm{i}}$	$2.3951(6)$	$\mathrm{C} 4-\mathrm{C} 6$	$1.510(4)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.475(3)$		
$\mathrm{O} 2-\mathrm{P} 1-\mathrm{O} 1$	$96.46(10)$	$\mathrm{O} 1-\mathrm{P} 1-\mathrm{Se} 2$	$108.40(8)$
$\mathrm{O} 2-\mathrm{P} 1-\mathrm{Se} 1$	$119.29(8)$	$\mathrm{Se} 1-\mathrm{P} 1-\mathrm{Se} 2$	$104.04(3)$
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{Se} 1$	$119.34(8)$	$\mathrm{P} 1-\mathrm{Se} 2-\mathrm{Se} 2^{\mathrm{i}}$	$98.35(2)$
$\mathrm{O} 2-\mathrm{P} 1-\mathrm{Se} 2$	$108.85(8)$		
$\mathrm{P} 1-\mathrm{Se} 2-\mathrm{Se} 2^{\mathrm{i}}-\mathrm{P} 1^{\mathrm{i}}$	180.0		
Symmetry code: (i) $1-x, 1-y,-z$.			

H atoms were generated in calculated positions and constrained with the use of a riding model. The isotropic displacement parameter for each H atom was set 20% larger than that of the parent atom.

For both compounds, data collection: SMART (Bruker, 1999); cell refinement: SMART (Bruker, 1999); data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS (Sheldrick, 1997); program(s) used to refine structure: SHELXL (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1997); software used to prepare material for publication: SHELXTL.

organic compounds

This research was supported by the National Science Foundation (grant No. CHE-9819385).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DA1125). Services for accessing these data are described at the back of the journal.

References

Béreau, V. \& Ibers, J. A. (2000). C. R. Acad. Sci. Ser. IIc. In the press.

Bruker (1999). SMART (Version 5.054) and SAINT-Plus (Version 6.0). Bruker AXS Inc., Madison, Wisconsin, USA.
Jørgensen, C. K. (1962). Mol. Phys. 5, 485-492.
Kudchadker, M. V., Zingaro, R. A. \& Irgolic, K. J. (1968). Can. J. Chem. 44, 1415-1424.
Liu, C. W., Chen, H.-C., Wang, J.-C. \& Keng, T.-C. (1998). J. Chem. Soc. Chem. Commun. pp. 1831-1832.
Liu, C. W., Shang, I.-J., Wang, J.-C. \& Keng, T.-C. (1999). J. Chem. Soc. Chem. Commun. pp. 995-996.
Sheldrick, G. M. (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Tattershall, B. W., Sandham, E. L. \& Clegg, W. (1997). J. Chem. Soc. Dalton Trans. pp. 81-87.

